
E�ect of radiation on natural convection about a truncated
cone

K.A. Yih

Department of General Course, Air Force Aeronautics Technology School, Kangshan, Kaohsiung, Taiwan 90395-2, ROC

Received 29 October 1998; received in revised form 9 March 1999

Abstract

A boundary layer analysis is presented to investigate numerically the e�ect of radiation on natural convection

¯ow of an optically dense viscous ¯uid over an isothermal truncated cone in this paper. The nonsimilar governing
equations are obtained by using a suitable transformation and solved by the Keller box method. Numerical results
for the dimensionless velocity pro®les, the dimensionless temperature pro®les, the local friction coe�cient and the
local Nusselt number are graphically presented for the dimensionless distance x, the Prandtl number Pr = 0.7, the

radiation±conduction parameter Rd and the surface temperature parameter H. It is shown that increasing x, Rd and
H increases the local Nusselt number. The local friction coe�cient decreases with increasing the above three
parameters. Whereas, for the larger value of Rd and H, the variation of the local friction coe�cient with x has the

phenomenon of maximum. Furthermore, the local friction coe�cient and the local Nusselt number of the truncated
cone approach those of the inclined plate (full cone) for the case of x=0 (x 41). # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

The problem of natural convection about heated

vertical surfaces has received a great deal of attention.

In the aspect of a vertical ¯at plate, Churchill and

Ozoe [1] presented a correlation for laminar natural

convection from a vertical plate. Kao [2] investigated

the local nonsimilar solution for laminar natural con-

vection adjacent to a vertical wall. The problem of

natural convection over a semi-in®nite ¯at plate with a

non-uniform wall temperature is studied by Na [3] by

a numerical method. Minkowycz and Sparrow [4] used

the local nonsimilarity method to analyze laminar

natural convection from a vertical plate.

In the aspect of a cone, Hering and Grosh [5]

studied the laminar natural convection from a non-iso-

thermal cone and showed that similarity solutions exist

when the cone wall temperature varies as a power

function of distance along a cone ray. Later, Hering

[6] extended the analysis to investigate for low Prandtl

numbers. Roy [7] extended the study of Hering and

Grosh [5] to treat the case of high Prandtl numbers.

Alamgir [8] used an integral method to study the over-

all heat transfer from vertical cones in laminar natural

convection. Na and Chiou [9] investigated the laminar

natural convection over a slender vertical frustum of a

cone with a transverse curvature e�ect. Later, Na and

Chiou [10] presented the laminar natural convection

over a frustum of a cone without a transverse curva-

ture e�ect (i.e., large cone angles when the boundary

layer thickness is small compared with the local radius

of the cone). They obtained the similarity solutions for

the limiting cases of x=0 and x=1, respectively. (x
measures a dimensionless distance from the apex of

the full cone.) Previous researches [1±10], however,

have only concentrated upon the problem of natural

convection without radiation e�ect.

As the di�erence between the surface temperature
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and the ambient temperature is large, the radiation

e�ect becomes important. In the aspect of convection±

radiation, Viskanta and Grosh [11] considered the

e�ects of thermal radiation on the temperature distri-

bution and the heat transfer in an absorbing and emit-

ting media ¯owing over a wedge by using the

Rosseland di�usion approximation. This approxi-

mation leads to a considerable simpli®cation in the ex-

pression for radiant ¯ux. Later, a natural convection±

radiation interaction in the boundary-layer ¯ow over

horizontal surfaces was presented by Ali et al. [12]. In

[11,12], the temperature di�erences within the ¯ow are

assumed to be su�ciently small such that T 4 may be

expressed as a linear function of temperature, i.e.

T 424T 3
1T ÿ 3T 4

1. Recently, Hossain and his fellow

workers investigated the natural convection±radiation

interaction on a boundary-layer ¯ow along a thin ver-

tical cylinder [13], an isothermal plate inclined at a

small angle to the horizontal [14], and cylinders of an

elliptic cross section [15], respectively. In [12±15], the

implicit ®nite di�erence method together with the

Keller box elimination technique was employed.

The purpose of this paper, therefore, is to extend the

study of Na and Chiou [10] to consider the e�ect of

radiation on the ¯ow and heat transfer characteristics

in a natural convection ¯ow of an optically dense vis-

cous ¯uid over an isothermal truncated cone.

2. Analysis

Consider the problem of the radiation e�ect on a

natural convection boundary-layer ¯ow of optically

dense viscous incompressible ¯uid about a truncated

cone (with half angle g ). Fig. 1 shows the ¯ow model

and physical coordinate system. The origin of the coor-

Nomenclature

ar Rosseland mean extinction coe�cient
Cf local friction coe�cient, 2n(@u/@y )y = 0/U

2
r

Cp speci®c heat at constant pressure

f dimensionless stream function
g gravitational acceleration
Grx � local Grashof number, g cos

gb(TwÿT1)(x �)3/n 2

h local heat transfer coe�cient
H surface temperature parameter, Tw/T1
k thermal conductivity
Nux � local Nusselt number, hx �/k
Pr Prandtl number, n/a
r local radius of the truncated cone

Rd radiation±conduction parameter, 4sT 3
1/

[k(ar+ss)]
T temperature

u velocity component in the x-direction
Ur reference velocity, [ g cos gb(TwÿT1)x �]1/2
v velocity component in the y-direction

x streamwise coordinate
xo distance of the leading edge of truncated

cone measured from the origin

x � distance measured from the leading edge
of the truncated cone, xÿxo

y transverse coordinate.

Greek symbols
a thermal di�usivity
b coe�cient of thermal expansion

g half angle of the truncated cone
Z pseudosimilarity variable
y dimensionless temperature
x dimensionless distance

n kinematic viscosity
r density
s Stefan±Boltzmann constant

ss scattering coe�cient
c stream function.

Subscripts
r reference condition

w condition at the wall
1 condition at in®nity.

Fig. 1. The ¯ow model and physical coordinate system.
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dinate system is placed at the vertex of the full cone,
where x is the coordinate along the surface of the cone

measured from the origin and y is the coordinate nor-
mal to the surface, respectively. The boundary layer is
assumed to develop at the leading edge of the trun-

cated cone (x=xo), which means the temperature at
the circular base is assumed to be at the same as the
ambient temperature T1. The uniform wall tempera-

ture of the truncated cone Tw is higher than T1, an
upward ¯ow is created as a result of the buoyancy
force. The ¯ow is laminar, steady and all the ¯uid

properties are assumed to be constant except for the
density variation in the buoyancy force term.
Introducing the boundary layer, Boussinesq and

Rosseland di�usion approximations [13±15], the gov-

erning equations can be written as follows:

@ �ru�
@x
� @ �rv�

@y
� 0, �1�

u
@u

@x
� v

@u

@y
� g cos gb�Tÿ T1� � n

@ 2u

@y2
, �2�

u
@T

@x
� v

@T

@y
� a

@ 2T

@y2
� 16s

3�ar � ss�rCp

@

@y

�
T 3 @T

@y

�
: �3�

The boundary conditions are de®ned as follows:

y � 0: u � 0, v � 0, T � Tw, �4�

y41: u � 0, T � T1, �5�

where u and v are the velocities in the x- and y-direc-
tions. g is the gravitational acceleration. b is the ther-
mal expansion coe�cient. T is the temperature. n is the

kinematic viscosity. a is the thermal di�usivity. s is the
Stefan±Boltzmann constant. ar is the Rosseland mean
extinction coe�cient. ss is the scattering coe�cient. r
is the density. Cp is the speci®c heat at constant press-
ure. The term 16sT 3/[3(ar+ss)] can be considered as
the `radiative conductivity'.

The boundary layer remains thin because it grows
less quickly than does the radius of the cone. The local
radius to a point in the boundary layer, therefore, can
be replaced by the radius of the truncated cone r, i.e.,

r=x sin g. Eqs. (1)±(5) are valid in xo R x <1.
The continuity equation may be satis®ed by intro-

ducing a stream function by the customary de®nition

ru � @c
@y

and rv � ÿ@c
@x
: �6�

Invoking the following dimensionless variables

x � x �

x o

� xÿ x o

x o

, Z � y

x �
�Grx � �1=4,

f �x,Z� � c

nr�Grx � �1=4
, y�x,Z� � Tÿ T1

Tw ÿ T1

�7�

and substituting Eq. (7) into Eqs. (1)±(5), we obtain

f 1�
�

x
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�
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The boundary conditions are de®ned as follows:

Z � 0: f 0 � 0, f � 0, y � 1, �10�

Z41: f 0 � 0, y � 0: �11�

Utilizing the transformation Eq. (7), the velocities in
the x- and y-directions may be evaluated from Eq. (6)
as

u � n�Grx � �1=2
x �

f 0 � Ur f
0 and

v � ÿn�Grx � �1=4
x �

��
x

1� x
� 3

4

�
f� x

@ f

@x

ÿ1
4
Z f 0
�
: �12�

In the above equations, the primes denote the di�eren-
tiation with respect to Z. x � is the distance measured
from the leading edge of the truncated cone. Grx �=g

cos gb(TwÿT1)(x �)3/n 2 is the local Grashof number
based upon x �. Pr=n/a is the Prandtl number.
Rd=4sT 3

1/[k(ar+ss)] is the radiation±conduction par-
ameter. H=Tw/T1 is the surface temperature par-

ameter which represents the ratio of the surface
temperature and the ambient temperature. Ur=[ g cos
gb(TwÿT1)x �]1/2 is the reference velocity.

It is apparent that for the case of Rd=0 (no radi-
ation interaction), Eqs. (8) and (9) are reduced to
those of Na and Chiou [10]. For the case of

x=Rd=g=0, Eqs. (8) and (9) are reduce to those of a
vertical plate [3] where the similarity solutions are
obtained. For the case of x 41, Eqs. (8) and (9)
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reduce to the case of a full cone and the similarity sol-
utions are also obtained since @f/@x=@f '/@x=@y/@x=0

as x 41.

3. Numerical method

Eqs. (8) and (9) with the boundary conditions (10)

and (11) have been solved numerically using a very ef-
®cient implicit ®nite-di�erence method known as the
modi®ed Keller-box scheme [16]. The computations

were carried out on an AcerPower 590hd computer.
We have studied the e�ects of step sizes of Dx, DZ1
and the edge of the boundary-layer Z1 on the solution

in order to optimize them. Therefore, the variable grid
parameter is 1.01, DZ1=0.001 and Dx=0.001
(0 R x R 0.01), 0.01 (0.01 R x R 0.1), 0.1
(0.1 R x R 1), 1 (1 R x R 10), 10 (10 R x R 100), 100

(100 R x R 1000), 1000 (1000 R x R 10,000). The
edge of the boundary-layer 20 R Z1R 50 is found to
be su�ciently accurate for the values of v f 01v,
vy '1v < 10ÿ3. The results here are independent of the
step sizes of Dx, DZ1 and Z1 almost up to the fourth
decimal place. The iterative procedure is stopped to

give the velocity and the temperature distributions

when the error in computing the vf0wv and vy 'wv in the
next procedure becomes less than 10ÿ5.
The integrated values of the velocity and the tem-

perature ®elds from Eqs. (8) and (9) thus obtained are
used to calculate the corresponding values of the local

friction coe�cient and the local Nusselt number from
the following relations:

1

2
Cf �Grx � �1=4 � ÿf 0�x,0� and

Nux �

�Grx � �1=4
�
�
1� 4RdH

3

3

�
�ÿy 0�x,0��:

�13�

4. Results and discussion

In order to verify the accuracy of our present
method, we have compared our results with those of

Cebeci and Bradshaw [17], Na [3], Na and Chiou [10],
Kays and Crawford [18], Lin and Chen [19], Hering
[6], Roy [7] and Alamgir [8]. The comparisons in all

the above cases are found to be in excellent agreement,
as shown in Table 1. Here, 1 denotes x=104.
Numerical results are presented graphically for the

Prandtl number Pr = 0.7, the dimensionless distance x

Table 1

Comparison of values of (a) f 0(0, 0) and ÿy '(0, 0) and (b) f 0(1, 0) and ÿy '(1, 0) for various values of Pr with Rd=0

(a) f 0(0, 0) ÿy '(0, 0)

Pr [17] Present results [3] [10] [17] [18] [19] Present results

0.0001 Ð 1.4998 Ð Ð Ð Ð Ð 0.0060

0.001 Ð 1.4728 Ð Ð Ð Ð 0.0187 0.0189

0.01 Ð 1.3968 0.0574 0.0574 Ð 0.0570 0.0570 0.0570

0.1 1.2104 1.2144 Ð Ð 0.1637 0.164 0.1627 0.1629

1 0.9081 0.9084 0.4010 0.4011 0.4009 0.401 0.4009 0.4012

10 0.5930 0.5927 0.8269 0.8269 0.8266 0.827 0.8258 0.8266

100 0.3564 0.3559 1.5493 1.5493 1.5495 1.55 1.5490 1.5493

1000 Ð 0.2049 Ð Ð Ð 2.80 2.8035 2.8035

10,000 Ð 0.1161 Ð Ð Ð Ð 5.0125 5.0127

(b) f 0(1, 0) ÿy '(1, 0)

Pr [6] [7] Present results [6] [7] [8] [10] Present results

0.0001 Ð Ð 1.6006 Ð Ð 0.0071 Ð 0.0079

0.001 1.5166 Ð 1.5135 0.0247 Ð 0.0225 Ð 0.0246

0.01 1.3550 Ð 1.3551 0.0748 Ð 0.0709 0.0749 0.0749

0.1 1.0960 Ð 1.0960 0.2113 Ð 0.2141 Ð 0.2116

1 0.7694 0.8600 0.7699 0.5104 0.5275 0.5280 0.5104 0.5109

10 Ð 0.4899 0.4877 Ð 1.0354 1.0159 1.0340 1.0339

100 Ð 0.2897 0.2896 Ð 1.9229 1.8237 1.9220 1.9226

1000 Ð 0.1661 0.1661 Ð 3.4700 3.2463 Ð 3.4696

10,000 Ð 0.0940 0.0940 Ð 6.1998 5.7734 Ð 6.1984

K.A. Yih / Int. J. Heat Mass Transfer 42 (1999) 4299±43054302



ranging from 10ÿ3 to 104, the radiation±conduction

parameter Rd ranging from 0 to 10 and the surface
temperature parameter H ranging from 1.1 to 3.0.

Fig. 2 shows the dimensionless (a) velocity and (b)

temperature pro®les for various values of the radi-
ation±conduction parameter Rd, respectively. The

dimensionless velocity and temperature pro®les become

fat for the increase of Rd. Furthermore, both the maxi-
mum velocity and the location of the maximum vel-

ocity away from the surface increase as Rd increases.

The dimensionless (a) velocity and (b) temperature
pro®les for various values of the surface temperature

parameter H are illustrated in Fig. 3, respectively.
When H increases, the maximum velocity increases

and the dimensionless velocity and temperature pro®les

become fat. When Rd and H are changed, the dimen-
sionless velocity (temperature) pro®les tend to be simi-

lar to Figs. 2(a) and 3(a) (Figs. 2(b) and 3(b)).

Fig. 4 depicts the dimensionless (a) velocity and (b)
temperature pro®les for various values of the dimen-

sionless distance x, respectively. The dimensionless vel-

ocity and temperature pro®les become thin for the
increase of x. It is also found that, for the case of

x=1, the dimensionless velocity gradient at the wall is
larger than other cases, as presented in Fig. 4(a).
Whereas, the dimensionless temperature gradient at the

wall increases with increasing x.
The local (a) friction coe�cient and (b) Nusselt

number for various values of the radiation±conduction
parameter Rd are shown in Fig. 5, respectively. For a
®xed value of x, the local friction coe�cient and the

local Nusselt number increase as Rd increases. When x
is very small and large, the local friction coe�cient

and the local Nusselt number become almost constant.
For the case of Rd=0.1, the local friction coe�cient
reduces as x increases. While, for the case of Rd=10,

as x varies from 10ÿ3 to 104, the local friction coef-
®cient increases initially from a constant value, reaches
a maximum (about x=2) and then decreases gradually

to another constant value. This is because the dimen-
sionless wall velocity gradient at x=1 is larger, as

Fig. 2. Dimensionless (a) velocity and (b) temperature pro®les

for various values of Rd.

Fig. 3. Dimensionless (a) velocity and (b) temperature pro®les

for various values of H.
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revealed in Fig. 4(a). It is also apparent that, for a

given Rd, the local Nusselt number enhances with

increasing x, as shown in Fig. 5(b).

Fig. 6 displays the local (a) friction coe�cient and

(b) Nusselt number for various values of the surface

temperature parameter H, respectively. For a ®xed

value of x, the local friction coe�cient and the local

Nusselt number increase as H increases. This is due to
the fact that increasing R and H increases the surface

velocity gradient f0(x, 0), as shown in Figs. 2(a) and

3(a). The higher the surface velocity gradient is, the

larger local friction coe�cient. Although the surface

temperature gradient ÿy '(x, 0) is low for the case of

large Rd and H (radiation e�ect becomes pronounced),

as shown in Figs. 2(b) and 3(b), the local Nusselt num-

ber is still large. This is because the local Nusselt num-

ber is found to be signi®cantly a�ected by Rd and H
than ÿy '(x, 0), as revealed in Eq. (13). For the case of

H= 3, the variation of the local friction coe�cient

with x also has the phenomenon of maximum (about

x=0.7), as illustrated in Fig. 6(a). While, the local

Nusselt number enhances from the lower constant to
the higher one with the increase of x, as shown in Fig.
6(b).

5. Conclusions

The e�ect of radiation on the natural convection
¯ow of an optically dense viscous ¯uid over an isother-
mal truncated cone with Rosseland di�usion approxi-

mation is numerically analyzed. The transformed
governing equations are solved by the Keller box
method. Numerical solutions for the details of the

dimensionless velocity and temperature pro®les, the
local friction coe�cient and the local Nusselt number
are presented graphically for a range of the dimension-

less distance x, the radiation±conduction parameter Rd

and the surface temperature parameter H. For the lar-
ger value of Rd and H, as x varies from 10ÿ3 to 104,

Fig. 4. Dimensionless (a) velocity and (b) temperature pro®les

for various values of x.

Fig. 5. Local (a) friction coe�cient and (b) Nusselt number

for various values of Rd.
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the local friction coe�cient increases initially from a
higher constant value, reaches a maximum at an inter-
mediate value of x and then decreases gradually to a

lower constant value. Increasing the value of x, H and
Rd augments the local Nusselt number. Moreover, the
local friction coe�cient and the local Nusselt number
approach to the limits of the inclined plate (full cone)

as x is very small (large).
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